Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 8(5)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37754164

RESUMO

Biological rhythms are periodic internal variations of living organisms that act as adaptive responses to environmental changes. The human pacemaker is the suprachiasmatic nucleus, a brain region involved in biological functions like homeostasis or emotion. Biological rhythms are ultradian (<24 h), circadian (∼24 h), or infradian (>24 h) depending on their period. Circadian rhythms are the most studied since they regulate daily sleep, emotion, and activity. Ambient and internal stimuli, such as light or activity, influence the timing and the period of biological rhythms, making our bodies adapt to dynamic situations. Nowadays, robots experience unceasing development, assisting us in many tasks. Due to the dynamic conditions of social environments and human-robot interaction, robots exhibiting adaptive behavior have more possibilities to engage users by emulating human social skills. This paper presents a biologically inspired model based on circadian biorhythms for autonomous and adaptive robot behavior. The model uses the Dynamic Circadian Integrated Response Characteristic method to mimic human biology and control artificial biologically inspired functions influencing the robot's decision-making. The robot's clock adapts to light, ambient noise, and user activity, synchronizing the robot's behavior to the ambient conditions. The results show the adaptive response of the model to time shifts and seasonal changes of different ambient stimuli while regulating simulated hormones that are key in sleep/activity timing, stress, and autonomic basal heartbeat control during the day.

2.
Complex Intell Systems ; : 1-19, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37361968

RESUMO

The decisions made by social robots while they fulfill their tasks have a strong influence on their performance. In these contexts, autonomous social robots must exhibit adaptive and social-based behavior to make appropriate decisions and operate correctly in complex and dynamic scenarios. This paper presents a Decision-Making System for social robots working on long-term interactions like cognitive stimulation or entertainment. The Decision-making System employs the robot's sensors, user information, and a biologically inspired module to replicate how human behavior emerges in the robot. Besides, the system personalizes the interaction to maintain the users' engagement while adapting to their features and preferences, overcoming possible interaction limitations. The system evaluation was in terms of usability, performance metrics, and user perceptions. We used the Mini social robot as the device where we integrated the architecture and carried out the experimentation. The usability evaluation consisted of 30 participants interacting with the autonomous robot in 30 min sessions. Then, 19 participants evaluated their perceptions of robot attributes of the Godspeed questionnaire by playing with the robot in 30 min sessions. The participants rated the Decision-making System with excellent usability (81.08 out of 100 points), perceiving the robot as intelligent (4.28 out of 5), animated (4.07 out of 5), and likable (4.16 out of 5). However, they also rated Mini as unsafe (security perceived as 3.15 out of 5), probably because users could not influence the robot's decisions.

3.
User Model User-adapt Interact ; 33(2): 359-403, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35431456

RESUMO

Adapting to dynamic environments is essential for artificial agents, especially those aiming to communicate with people interactively. In this context, a social robot that adapts its behaviour to different users and proactively suggests their favourite activities may produce a more successful interaction. In this work, we describe how the autonomous decision-making system embedded in our social robot Mini can produce a personalised interactive communication experience by considering the preferences of the user the robot interacts with. We compared the performance of Top Label as Class and Ranking by Pairwise Comparison, two promising algorithms in the area, to find the one that best predicts the user preferences. Although both algorithms provide robust results in preference prediction, we decided to integrate Ranking by Pairwise Comparison since it provides better estimations. The method proposed in this contribution allows the autonomous decision-making system of the robot to work on different modes, balancing activity exploration with the selection of the favourite entertaining activities. The operation of the preference learning system is shown in three real case studies where the decision-making system works differently depending on the user the robot is facing. Then, we conducted a human-robot interaction experiment to investigate whether the robot users perceive the personalised selection of activities more appropriate than selecting the activities at random. The results show how the study participants found the personalised activity selection more appropriate, improving their likeability towards the robot and how intelligent they perceive the system. query Please check the edit made in the article title.

4.
BMC Psychiatry ; 22(1): 760, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471336

RESUMO

BACKGROUND: Social robots have demonstrated promising outcomes in terms of increasing the social health and well-being of people with dementia and mild cognitive impairment. According to the World Health Organization's Monitoring and assessing digital health interventions framework, usability and feasibility studies are crucial before implementing prototype social robots and proving their efficacy and effectiveness. This protocol paper aims to detail the plan for conducting the usability and feasibility study of the MINI robot based on evidence-based recommended methodology. METHODS: In this study, an experimental design and a mixed method of data collection will be applied. Twenty participants aged 65 and over with dementia or mild cognitive impairment will be recruited. Eight sessions of interaction with the robot, as well as qualitative and quantitative assessments, will be accomplished. The research will take place in a laboratory. Ethical approvals have been acquired. This research will be valuable in the development of the MINI robot and its practical deployment in the actual world, as well as the methodological evidence base in the sector of social robots. DISCUSSION: By the winter of 2022-2023, the findings of this study will be accessible for dissemination. This study will aid to improve the evidence-based methodology used to study the feasibility and usability of social robots in people with dementia and mild cognitive impairment as well as what can be learned to advance such study designs in the future.


Assuntos
Disfunção Cognitiva , Demência , Robótica , Humanos , Demência/psicologia , Estudos de Viabilidade , Interação Social , Disfunção Cognitiva/psicologia
5.
Sensors (Basel) ; 21(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34884147

RESUMO

Travellers use the term waymarking to define the action of posting signs, or waymarks, along a route. These marks are intended to be points of reference during navigation for the environment. In this research, we will define waymarking as the skill of a robot to signal the environment or generate information to facilitate localization and navigation, both for its own use and for other robots as well. We present an automated environment signaling system using human-robot interaction and radio frequency identification (RFID) technology. The goal is for the robot, through human-robot interaction, to obtain information from the environment and use this information to carry out the signaling or waymarking process. HRI will play a key role in the signaling process since this type of communication makes it possible to exchange more specific and enriching information. The robot uses common phrases such as "Where am I?" and "Where can I go?", just as we humans do when we ask other people for information about the environment. It is also possible to guide the robot and "show" it the environment to carry out the task of writing the signs. The robot will use the information received to create, update, or improve the navigation data in the RFID signals. In this paper, the signaling process will be described, how the robot acquires the information for signals, writing and updating process and finally, the implementation and integration in a real social robot in a real indoor environment.


Assuntos
Robótica , Comunicação , Humanos , Motivação , Interação Social
6.
Sensors (Basel) ; 18(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115836

RESUMO

Nowadays, many robotic applications require robots making their own decisions and adapting to different conditions and users. This work presents a biologically inspired decision making system, based on drives, motivations, wellbeing, and self-learning, that governs the behavior of the robot considering both internal and external circumstances. In this paper we state the biological foundations that drove the design of the system, as well as how it has been implemented in a real robot. Following a homeostatic approach, the ultimate goal of the robot is to keep its wellbeing as high as possible. In order to achieve this goal, our decision making system uses learning mechanisms to assess the best action to execute at any moment. Considering that the proposed system has been implemented in a real social robot, human-robot interaction is of paramount importance and the learned behaviors of the robot are oriented to foster the interactions with the user. The operation of the system is shown in a scenario where the robot Mini plays games with a user. In this context, we have included a robust user detection mechanism tailored for short distance interactions. After the learning phase, the robot has learned how to lead the user to interact with it in a natural way.


Assuntos
Tomada de Decisões , Motivação , Robótica/métodos , Humanos , Aprendizagem , Percepção
7.
Sensors (Basel) ; 13(11): 15549-81, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24240598

RESUMO

In this paper, a multimodal user-emotion detection system for social robots is presented. This system is intended to be used during human-robot interaction, and it is integrated as part of the overall interaction system of the robot: the Robotics Dialog System (RDS). Two modes are used to detect emotions: the voice and face expression analysis. In order to analyze the voice of the user, a new component has been developed: Gender and Emotion Voice Analysis (GEVA), which is written using the Chuck language. For emotion detection in facial expressions, the system, Gender and Emotion Facial Analysis (GEFA), has been also developed. This last system integrates two third-party solutions: Sophisticated High-speed Object Recognition Engine (SHORE) and Computer Expression Recognition Toolbox (CERT). Once these new components (GEVA and GEFA) give their results, a decision rule is applied in order to combine the information given by both of them. The result of this rule, the detected emotion, is integrated into the dialog system through communicative acts. Hence, each communicative act gives, among other things, the detected emotion of the user to the RDS so it can adapt its strategy in order to get a greater satisfaction degree during the human-robot dialog. Each of the new components, GEVA and GEFA, can also be used individually. Moreover, they are integrated with the robotic control platform ROS (Robot Operating System). Several experiments with real users were performed to determine the accuracy of each component and to set the final decision rule. The results obtained from applying this decision rule in these experiments show a high success rate in automatic user emotion recognition, improving the results given by the two information channels (audio and visual) separately.


Assuntos
Emoções/fisiologia , Robótica , Expressão Facial , Humanos
8.
Sensors (Basel) ; 13(9): 12406-30, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24048336

RESUMO

The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics.


Assuntos
Inteligência Artificial , Instrução por Computador/métodos , Gestos , Relações Interpessoais , Sistemas Homem-Máquina , Robótica/métodos , Interface para o Reconhecimento da Fala , Comunicação , Cibernética/métodos , Reconhecimento Automatizado de Padrão/métodos , Integração de Sistemas
9.
Sensors (Basel) ; 12(7): 9913-35, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23012577

RESUMO

This paper presents a user localization system based on the fusion of visual information and sound source localization, implemented on a social robot called Maggie. One of the main requisites to obtain a natural interaction between human-human and human-robot is an adequate spatial situation between the interlocutors, that is, to be orientated and situated at the right distance during the conversation in order to have a satisfactory communicative process. Our social robot uses a complete multimodal dialog system which manages the user-robot interaction during the communicative process. One of its main components is the presented user localization system. To determine the most suitable allocation of the robot in relation to the user, a proxemic study of the human-robot interaction is required, which is described in this paper. The study has been made with two groups of users: children, aged between 8 and 17, and adults. Finally, at the end of the paper, experimental results with the proposed multimodal dialog system are presented.


Assuntos
Robótica , Algoritmos , Humanos , Software , Som , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...